MEM面试||《管理经济学》之常用分析方法

MEMChina
2019-08-17 09:59 浏览量: 2701

MEM中国网讯】均衡分析方法

均衡是指获得最大利益的资源组合和行为选择。企业的行为必然要受多种因素的约束,而这些因素往往是相互制约的。均衡分析方法就是在考虑这些制约的条件下,确定各因素的比例关系,使其最有利于企业的发展。制定价格。

公式:销售收入=价格×销售量

◆ 价格的高低直接影响销售收入,价格太高,必然会降低销售量,销售收入不一定就高;同样,为了达成更多的销售量,企业必然要以较低的价位来刺激购买力,如果价位过低,也不能达到较高的销售总额。所以,企业在定价的时候,总是要面对这样一个矛盾:提高价格可能会减少销售量,扩大销售量就必然要降低价格。如何既保持一定的市场占有率,同时又能使企业获利?这就涉及到“均衡”问题。肯定有一个价格水平,能够使销售总收入达到最大。在这个价格之上或之下,都会使企业的收益减少。管理经济学就为企业提供了均衡分析的方法,帮助企业制定合适的价格。

◆ 产量(规模)决策。企业规模的大小会影响其生产、销售及各种成本,进而影响投入和产出的关系。小规模生产的企业,可能致力于产品的质量,以较高的价格获得盈利。而大规模的企业则以较低的成本和较低的价格取胜。如何选择一个适合自身发展的规模,就要用到均衡分析的方法。

◆ 要素组合。企业在生产经营中,需要投入各种要素。其中有些要素可以相互替代。由于各种要素的价格不一样,组合起来的要素的成本是有差异的。选择哪一个方案,也需要利用均衡分析的方法。

均衡分析方法主要应用方向:制定价格、确定产量、确定要素组合。

边际分析方法

在经济学上,边际是指每单位投入所引起的产出的变化。边际分析方法在管理经济学中有较多的应用。它主要分析企业在一定产量水平时,每增加一个单位的产品对总利润产生的影响。可以用以下的公式来说明。 公式:边际值=△f(x)/△X其中,X代表投入,f(x)代表产出,表现为X的函数;△表示变量。假设基数X处在变化中,那么,每增加一个单位的投入,这个单位所引起的产出的增量是变化的。

边际分析方法的两个重要概念:边际成本:每增加一个单位的产品所引起的成本增量;边际收益:每增加一个单位的产品所带来的收益增量。企业在判断一项经济活动对企业的利弊时,不是依据它的全部成本,而是依据它所引起的边际收益与边际成本的比较。若前者大于后者,这项活动就对企业有利,反之则不利。

边际分析方法应用的主要方向:

◆ 确定规模。上文提到,规模的大小直接影响到企业的生产效益。当一个企业要扩大规模时,它就要分析每增大一个单位的规模,所可能带来的产出的增量,这就是边际分析。科学的边际分析方法可以使企业的规模确定在一个最合理的范围内。公式:π=MR-MC 其中,π代表边际利润,MR代表边际收益,MC代表边际成本。

◆ 当π>0时,增加一个单位的产品,获得的收益增量比引起的成本增量大,说明企业还没有达到能够获得最大收益的产量规模,此时,企业应该扩大产量。

◆ 当π

◆ 当π=0时,企业达到最优的产量规模。

◆ 价格决策。每提高(或降低)一个单位的价格,对总收益会产生什么样的影响,这实际上也要用到边际分析方法,它可以帮助企业制定具有竞争力的价格战略。

◆ 确定合理的要素投入。在确定生产中需要投入的各个要素的量时,我们需要分析每增加一个单位的某种要素时,对总的收益会产生什么影响。这也是边际分析。

◆ 产品结构分析。多数企业都不只生产一个产品,各个产品生产的比例就是产品结构。确定各个产品生产多少的比例关系就可以运用边际分析方法——对各个产品的边际效益进行分析。所谓边际效益,就是对一个产品的生产增加一个单位的资金投入所引起的收益的变化量。如果把资金增量投入到各个产品,所能产生的边际效益是相等的,那么这个企业的产品结构就是合理的;否则,其中必定有某种产品值得扩大规模,以带来更多的收益。针对产品结构进行边际分析,可以明确哪些产品需要增加投入,哪些产品需要缩小生产规模。

边际分析方法主要应用方向:确定企业规模、制定价格策略、确定要素投入量、产品结构分析

数学模型分析法

在经济学和管理学的发展中,越来越多地应用到计量分析的方法。数学模型就是一种计量分析工具,在管理经济学中大量应用。数学模型本质上是对复杂现实的抽象,使问题简单化和直观化,以便准确把握事物之间的联系,认识事物的本质,从而有效地解决问题。在实践中,数学模型在用于管理决策和经济分析时是一个极为有效的方法。此外,值得注意的是,数学是一个非常有限的量的关系,现实经济中有很多复杂的问题,是单纯的数学模型不能表现的,还需借助于定性的分析方法。

数学模型主要的应用方向:

◆ 需求预测。企业在确定某种产品的生产规模之前,需要对市场的发展潜力进行预测,可以创建相关的数学模型,来表现影响市场发展的各种因素在量上的变化,进而分析这些变化对需求所产生的影响的大小。

◆ 生产分析。生产要素的投入,生产组织形式的选择,以及产品结构的确定,都可以通过创建数学模型,进行分析和决策。

◆成本决策。成本是直接影响利润的因素,是企业发展最为关注的一个焦点。当企业改变生产经营方向或者扩大规模时,在其追求利润最大化的目标下,应该确定一个什么样的成本水平,可以应用数学模型进行科学分析。

◆ 市场分析。市场是经济学的一个基础概念,在实践中表现为多种多样的形态。创建数学模型,可以分析不同性质的市场条件下,企业所可能选择的规模、价格和竞争策略。

◆ 风险分析。风险分析是对未来状态的预测。可以通过创建数学模型来表现在一项投资中,各种相关因素的量的大小以及量的变化所可能产生的对效益的影响。

数学模型主要的应用方向:需求预测、生产分析、成本决策、市场分析、风险分析。

编辑:采正东

(本文转载自名校MEM信息网 ,如有侵权请电话联系13810995524)

* 文章为作者独立观点,不代表MBAChina立场。采编部邮箱:news@mbachina.com,欢迎交流与合作。

收藏
订阅

备考交流

免费领取价值5000元MBA备考学习包(含近8年真题) 购买管理类联考MBA/MPAcc/MEM/MPA大纲配套新教材

扫码关注我们

  • 获取报考资讯
  • 了解院校活动
  • 学习备考干货
  • 研究上岸攻略

最新动态