上海财经大学信管·讲座预告 | Latent Network Information-Enhanced…


上海财经大学信管·讲座预告 | Latent Network Information-Enhanced…
时间
TIME
2022年9月27日(星期二)上午8:30--10:00
地点
VENUE
#腾讯会议:117-540-477
主讲人
SPEAKER
Hongzhe Zhang is a Ph.D. Candidate in Financial Service Analytics at the Alfred Lerner College of Business & Economics, University of Delaware. He received a Bachelor\'s degree in Mathematics from Xiamen University. His research focuses on solving important problems in financial technology, privacy-preserving AI, recommender systems, and healthcare analytics, with methods and tools drawn from reference disciplines, including management science (e.g., optimization) and computer science (e.g., machine learning).
主题
TITLE
Latent Network Information-Enhanced Credit Risk Prediction
摘要
ABSTRACT
Given the sheer size of the consumer credit market and the huge number of consumer credit users, credit risk prediction, or how to predict delinquent (or default) probabilities of consumer credits to aid financial institutions in granting and managing consumer credits, has become a critical problem in the consumer credit industry. While it is desirable to employ both users\' intrinsic and social network data for effective credit risk prediction, it is difficult to collect social network data. To address this challenge, we propose to use latent network information instead of social network data. Accordingly, we develop a novel credit risk prediction model that considers both users\' intrinsic data and latent network information. We then design a new credit risk prediction method that estimates the model parameters, learns latent network information, and integrates this information with users\' intrinsic data for credit risk prediction. We further extend our method to the multiclass and numerical credit risk prediction problems. Extensive empirical evaluations with real world data demonstrate the superior predictive power of our method over benchmark methods for a broad spectrum of credit risk prediction problems (binary, multiclass, and numerical). We also show substantial economic value generated from the superiority of our method through a case study.
(本文转载自上海财经大学 ,如有侵权请电话联系13810995524)
* 文章为作者独立观点,不代表MBAChina立场。采编部邮箱:news@mbachina.com,欢迎交流与合作。
热门推荐
备考交流
最新动态
推荐项目
活动日历
- 01月
- 02月
- 03月
- 04月
- 05月
- 06月
- 07月
- 08月
- 09月
- 10月
- 11月
- 12月
- 04/03 4月3日|云南大学2025年EMBA/MTA专业学位调剂说明会在线直播!
- 04/08 开放名额!北京师范大学经管学院MBA2025调剂说明会等你来
- 04/09 活动报名 | 4月9日交大安泰MBA深圳招生直通车,最全报考指南:全新招生政策详解、升级奖学金体系揭秘!
- 04/10 【FISF Forward】首波校友午餐来袭!解锁职场进阶密码!| FMBA
- 04/10 活动预告 | 第一批菁选见面会报名截止前,4月10日招生直通车为你的报考环节保驾护航!
- 04/10 预约席位 | 4月10日交大安泰EMBA招生说明会
- 04/11 北京邮电大学-法国里昂商学院EMBA项目25级招生政策发布会
- 04/12 校园开放日| 新能源顶流!揭秘千亿赛道背后的“钞能力”!
- 04/12 【招生活动报名】复旦MBA“光合计划”招生沙龙等你共赴未来
- 04/12 职场秘钥 校园解码 | 华理MBA/CMBA、MEM、MPAcc校园开放日嘉宾解锁!
热门资讯
MBA院校号
暂无数据